

Introduction to Probability Part 2

Solution

6. P(hits the target) =
$$\frac{25}{\pi \times 10^2}$$

Expected number of times =
$$50 \times \frac{25}{\pi \times 10^2} = \frac{25}{2\pi}$$

7. (a)
$$28 + x + 8 = 50$$

 $\therefore x = 14$

(b) Total frequency = 50
Frequency of landing on the side = 28
Relative frequency of landing on the side =
$$\frac{28}{50} = \frac{14}{25}$$

$$\therefore$$
 Experimental probability of landing on the side $=\frac{14}{25}$

∴ Experimental probability that the cup does not land on its side =
$$1 - \frac{14}{25}$$

= $\frac{11}{25}$

10.
$$P(\text{even}) = \frac{3}{6} = \frac{1}{2}$$

$$P(\text{odd}) = \frac{3}{6} = \frac{1}{2}$$

$$\therefore \text{ Expected value of the prize} = \frac{1}{2} \times \$4 + \frac{1}{2} \times \$2$$

11. The probability of winning \$100 000 =
$$\frac{1}{8000}$$

The probability of winning \$20 000 = $\frac{1}{8000}$

... The expected value of the prize of each ticket

$$= \frac{1}{8000} \times \$100000 + \frac{1}{8000} \times \$20000 + \frac{7998}{8000} \times \$0$$

$$= \$12.5 + \$2.5$$

$$= \$15$$